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Preface

This report summarizes the work carried out in the past three
vears under the Lunar Surface Electric Properties (SEP} Project.
It concerns primarily with the theory of radio-frequency interfero-
metry used in geophysical subsurface probing. Parts of this report

have been published in the following articles:

1. Kong, "Electromagnetic Fields Due to Dipole Antennas over
Stratified Anisotropic Media," Geophysics, Vol. 37, pp. 985~

996, 1972.

2. Shen, Tsang, and Kong, "Multifrequency Excitation of a Wire
Antenna for an Invariant Radiation Pattern,” IEEE Trans. on

Ant. and Prop., 1972.

3. Kong, Tsang, and Simmons, "Lunar Subsurface Probing with Radioc

Frequency Interferometry,” URSI Symposium, 1972,

4, Tsang, Kong, and Simmons, "Interference Patterns of a Hori-
zontal Electric Dipole over Layered Dielectric Media,"

J. Geophysics Research, 1973,

5. Kong, Tsang, and Simmons, "Geophysical Subsurface Probing with
Radic Frequency Interferometrgy“ IEEE Trans. on Ant. and Prop..,

July, 1974.

6. Tsang, Brown, Kong, and Simmons, "Numerical Evaluation of Electro-
magnetic Fields due to Dipole Antennas in the Presence of

Stratified Media,™ J. Geophysics Research, 1974.

Contributions are also made by L. Tsang, John Mallick, Winston Chan,
Paul Palmer through their S.B. Theses, and by L. Tsang through his

S.M., Thesis.
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Chapter 1.

INTRODUCTION

The subsurface of planetary bodies, including the earth and
its moon, can be examined with electromagnetic waves. In 1955,
the radio~-frequency interference fringes method was used on geo-
physical prospection of underground water in Egyptian desert
(E1 Said, 1955a, 1956h). This report concerns with the experi-
ment developed for Apollo 17 mission to measure the subsurface
electromagnetic properties of the moon (Simmens et al, '1973).
In the experiment, a transmitting antenna consisting of a pair
of orthogonal dipoles is laid directly on the lunar surface. The
antenna radiates sequentially at frequencies of 1, 2.1, 4, 8.1,
16 and 32.1 MHz in a time window of 100 millisecond for each fre-
gquency. The time window is sufficiently long that the experiment
is effectively a continuous wave experiment. A receiving antenna
consisting of three orthogonal loops is mounted on the lunar roving
vehicle. As the LRV traverses the lunar surface, the strengths
of magnetic field components are measured as a function of distance
from the transmitting antenna. The data are recorded on magnetic
tapes and returned to earth for analysis. The interference pat-
terns of the field-distance plot contain information about the
electromagnetic properties of the lunar subsurface. To test both
equipment and theory, experiments have been performed on three
glaciers (Strangway et al 1974) in Switzerland, Canada, and Alaska

and on a scale model tank (Rossiter et al, 1974) in laboratory.



In this report, we present the theoretical basis of the
experiment. The mathematical model is a stratified n-layer me-
dium. Each layer is bounded by plane boundaries and possesses
different electric permittivity, magnetic permeability, and
thickness. Although dipole radiation in the presence of stra-
tified media has been studied extensively (Sommerfeld 1949,
Brekhovikih 1960, Banos 1962, Gudmaudsen 1972, Wait 1470, Fe}sen
and Marcuvitz 1973, Kong 1972, Annan 1973), a proper account for
the interference fringes method is still lacking. The geometri-
cal optics approximation was the first approach used in calcu-
lating interference patterns (Fl Said 13956, Annan 1973, Tsang
et al 1973). With the use of the reflection coefficient formu-
lation (Kong 1972), all field components can be expressed in
integral forms with a single variable of integration. In order
to obtain explicit expressions for the six field components, the
following three different approaches are used to evaluate the
integrals: 1) geometrical optics approximation, 2) modal ap-
proach, and 3) direct numerical integration. Scattering effects
are ‘also discussed: the advantages and disadvantages of the
various methods and their respective regions of validity are
compared in the last Chapter. 2ll numerical results for aniso-

tropic as well as isotropic cases are presented in Appendices.



Chapter 2. 2-1

THEORETICAL FORMULATION

2.1 INTRODUCTION

The problem of radiation of a dipole source in the presence
of stratified media has been extensively studied with application
to geophysical explorations. An excellent review on the half-space
case is contained in the book by Sommerfeld (1949) and in the.
monograph by Bafos (1966). Propagation and Radiation in stratified
media are treated by Wait (1970) amd Ward (1967). Wolf (1946), and
Bhattacharya (1963) considered the case of dipoles on two layer
earth. Wait (1951, 1953) solved the problem of electrical and
magnetic dipoles over a stratified isotropic medium. The case of
an anisotropic half-space was studied by Chetéev (1963) and Wait
(1966a). Praus (1965), Sinha and Bhattacharya (1967) and Sinha
(1968, 1969) treated electric and magnetic dipoles over a two layer
anisotropic earth. Wait (1966b) formally solved the case of a
horizontal dipole 6ver a stratified anisotropic medium. All these
works are carried out by means of Sommerfeld's Hertzian potential
functions, and the primary interest is concentrated in the limits
of high conductivity. Magnetic properties are almost entirely
neglected; mainly because such model studies assume principal
applications to the earth where the permeability is nearly equal
to that of vacuum and the electric conductivity dominates at low
freaquencies, In events of other celestial bodies, such as the
moon wﬁere the lack of moisture renders very low conductivity to
the medium, a study of contributions due to all electric and

magnetic properties then becomes important.
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This Chapter is devoted to the case of radiation of wvarious
dipole sources in the presence of a stratified anisotropic media.
The anisotropic medium is uniaxial and possesses both tensor
permittivities and permeabilities. The principal axes are alll
perpendicular to the boundaries separating different media.
Solutions to the problem are facilitated by decomposing a general
wave field into TM and -‘TE modes, emploving the concept of propaga-
tion ma£rices and expressing the reflection coefficients in terms
of continuous fractions. The primary excitation is separated entirely
from contributions due to the medium. The reflection coefficients
depend solely on the geometrical confiqurations as well as the
physical properties of the stratified medium.

In studying the theory of electromagnetic wave propagation,
it has been appreciated both classically and quantum mechanically
(KOng, 1370) that introduction of a potential function is not
necessary.and sometimes complicates the algebra especially when
anisotropic media are involved. With recognition of the fact
that outside any source, two scalarx functions'are sufficient to
determine all field guantities, two components of the field
vectors can be chosen as the fundamental scalar functions. 1In
our case, the preferred field components for T™ and TE decomposition
are ciéarly those along the principal axis and to boundaries of
stratification., With the aid of propagation matrices (Kong, 1971),
wave amplitudes in any region are gasily calculated in terms of |
those in any other region. Writing in the form of continuous

fractions, we obtain a closed form solution for the reflection



coefficients, All field components are expressed in terms of

integrals which are ready for direct numerical evaluation. A

discussion is given for the various special cases.



2.2 TRANSVERSE ELECTRIC AND MAGNETIC WAVES

Governing equations for electromagnetic fields in a region

outside any source are the Maxwell's source free equations.

= inJ . i-I (2.1la)

1

Vx

yx H=- igwe . E (2.1b)

where in (2.}a), u is the permeability tensor of the media. The

tensor € in (2.1b) contains information about the dielectric

constant and the conductivity of the medium, €t ="' + ie",

where €' is the permittivity tensor, and €" is related to the

conductivity tensor ¢ by T = ?/m. Time harmonic excitations
with time dependence exp(-iwt} have been assumed. The tensors
€ and P can be represented by hermitian matrices. In our case,

we consider media which are uniaxially anisotropic, where

mll
i
m

(2.2a)

and

M= M (2. 2b)




We employ cylindrical coordinates, and the plane transverse to

~

the 2 axis is characterized by p and ¢. Longitudinal elec-

tric and magnetic components Ez and Hz are used to derive TE

‘and TM waves. The wave equations to be satisfied by E, and H,

are immediately derived from egquations (2.1) and (2,2). If we
take the 2z component of (2.1b) in view of € given by (2.2a},
employ (2.la) to eliminate transverse magnetic field components,

and use the fact that vV - E = (1 ~ a)aEz/az, the equation for

Ez is
2
2
(v 2 + a 2 ik a) E_ =0 - (2.
t 2 z
3z
By the same token, we obtain the wave equation for H,:
2 2 2
(v, +p 2= 4+ xp) H_=0 -
t 2 p-A (.
0z
In ecuations (2.3a) and (2.3b),
k= w/pe (2.
a =g, /€ (2.
b=y /¥ (2
and
2 13 iy 1 3
Ve = a5 P! T T2 2 (2.

3a)

3b)

4)

5a1

€}



is the transverse Laplacian operator expressed in cylindrical
éoordinates. It is seen from Eqg.{(3) that Ez and Hz are
decoupled, which would not be true if the t abd 1 tensors
possess off-diagonal elements. A unique decomposition of the
total wave into a transverse magnetic field (TM) mode derivable
from E_ and a transverse electric field (TE) mode derivable
from Hz is therefore plausible. We note that a pair of vector

wave eﬁuations can be derived from (2.1) and (2.2):

V’E + k’E + (a - DKPEz + (a - 1)V(IE,/32) = 0 (2.7a)
2"’ 2" 2 ~ (2 7b)
VH+ k"™H+ (b - 1)k sz + (b - l)V(BHz/BZ) = 0 .

Eg. (2.7a) is the wvector wave equation for the electric fields of

T™ waves where Hz = 0, and (2.7b) is the wave equation for the

-~

magnetic fields of TE waves, where Ez = 0, The =z component of
the two vector equations (2.7) gives rise to equation (2.3).
Solutions of Ez and H, to the wave ecguation (2.3) in
cylindrical cocrdinates are well known. As a consequence of the
Maxwell eguations (2.1), all transverse-electric- and magnetic-
field components can be expressed in terms of the longitudinal
components Ez and Hz which, respectively, characterize the
T™ and the TE waves. In our problems we are interested in wave
solutions which are outgoing in ; direction and traveling or

standing in 2z direction. Therefore, we obtain, for a fixed

separation constant n,



TM =

B =]
-C10
[0 8]

!;ITM._
-0

dk

l a_;tgz)( . -ik(zlz ik(:)z) Hn(l).(kpp)s ™ )
aig:(_m"ik(z)z ik(i) ) Hn(1) (kpp)SnTM'(qn)
[A(kp)e_ik(z) + B(kp)eik(:)z] Hn(l)(kpp)SnTM (cp))
i —i—‘:-g-; ( Aeik(z) Beik(z)z) g Mk s ™ (o)
_ 5-]‘1’—6;  ne ik(:) . k(:)z) Hn('l)l(k p)SnTM(q:)
0

(2.8a)

(<.8b}
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bwd “ik 2 k2 Q) Bt )
2 ( C + De ) H (kpp)sn (o)
p
.. (m) ., (m)
bbJLi -ik ik Z 13 TE
kp ( ce Z +pe 2 Hn( ) (kpp}Sn (o) (2.8¢c)
3 0
J
{m) ., (m} (m)
bk, -ix ™y k22 . . )
= ( -ce + De ) H_ (k _p)s ()
P
tm)
bk {m)
i —Z -ik(m)z ik z E' (2.8¢




where superscripts T™ and TE denote, respectively, ™ and TE waves.
We note that if the integrands for E_ and Hz‘ are denoted,

respectively, by Ez(ké) and Hz(kpj such that

™ _ [~ | TE _ ("
E !, dk E (k) - and H " = f dk H, (k ),

-

then the integrands of the transverse components are related to

Ez(kp) and Hz{kp) by the following relations:

: ™ _a ™ _ _; awe
Et(kﬂ) = = Vt BEz(kp)/az l, Ht(kp) i -;? Vt x Ez(kp),
(o] p
(2.9a)
and
w yTE _ o TE _ _; buu T
H_t(kp) l-cb-z Ve aHz(kp)/azJ, Et(kp) = i;‘{ vt x Hz(kp}
Y ' p
_ {2.9b)
where
: z t 0+ % 3p

The fact that TM waves are extraordinary waves in the medium is

signified in ecquation (2.8) by the superscript (e} on the z-

directed propagation constant kée), which satisfies the disper-
sion relation

kel - x? - kp’/a)lfz. (2.10a)
z



TE waves are derived from Hz and satisfy the dispersion relation

k= - k;/b)l/z, (2.10b)

where the superscript (m) indicates the effect of magnetic
anisotropy. In (2.8), the first element of the column matrices

N

denotes p component, the second element of $ component, and
the third element the ;-conponent. The Hankel functions Hntl)
of the first kind and nth order represent outgoing waves in

direction due to our choice of the time dependence exp(-iwt).

Sn(¢) stands for sinusoidal functions of ¢ . Primes on Hntl){kpp)
and Snf¢) denote differentiation with respect to the arguments.
The kp dependent functions A, B, C and D are to be determined

by the appropriate boundary conditions.

2.3 PRIMARY EXCITATION

The explicit solution to the problem of dipole radiation
over stratified medium depends on field excitations of the source,
and the geometrical configuration and physical constituents of the
medium, In the absence of the stratified medium, the solution of
electromagnetic fields in an isotropic medium due to a dipole
antenna, which we refer to as the primary excitation, is well~-known
(adler, Chu and Fano, 1960). The solution is usually written in
chperical coordinates. It can be transformed into cylindrical

coordinates and represented by Hankel functions in the integral



form. Writing in the general form, we have

ikzz
oo e
_ (l) ™ z >0 (2 11)
E, = l[oodkp B, (k) ~ix 2 | M (0) S, (@, 2 g -
e
ik =z
foe) e 2 7
_ : (1) TE z >0 (2.12)
Hz = :Lodkp H (kp) -k z H (_kpp) Sn () z <0
e

where EO and HO characterize the structure and excitation of
the dipole. All field components follow from Eg. (2.8)

with B=D =0, A=E, c=1i{0 for z <0, and A=2C =0,

For the elementary dipoles under consideration, we obtain

for:
. . . T™
1) Vertical electric dipole: n = 0, Sn (p) = 1
3 ‘
) Ilk
E = - —L {(2.13a)
o B muek
z
H =0 : (2,.13h)



2) Horizontal electric dipeole along %X-direction
2
Ilk
, P > ™ _
E =x1 8 e z <0 S1 = COSQ (2.14a)
2
H =1 Ilkp L] TE = - sing {2.14b)
(o} 8nk . 1
z
. . . TE,
3} Vertical magnetic dipole: n =0, S/ (@) =1
IAk 3
H = - i ——" (2.15a)
o . 8mk
z
E =0 {2.15b)
o

4) Horizontal magnetic dipole along ¥-direction

2 .
IAk
- P > . T™M
= = . 6
H0 + Py z <0 S1 cosgp (2.16a)
2
IAwnk
P TE ) (2.16b)
%o T " Bnk 8,77 = = sing

In the following, we derive Fg. (2.14) from well-known potential
solutions for the dipole., Similar derivation, comparetively sim-
pler, applies to Egs, (2,13), (2.15) and (2.16}. The vector poten-

tial solution for the horizontal electric dipole is
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A= A(;cos¢ -~ asin¢)

_ I2 ikr
where A= 7 e /xr

The electromagnetic fields are obtained from
ﬁ:in
and

= .1 - w0 2=
E=1E-E-{V(V-A)+kA}
Using the identity (Sommerfeld, 1949}

x

i o (1)
= 5 !w dkp -E—z- HO (kpp) e

+ik =z

ik
el
r

the field components can all be written in the integral form.

For the z-component,

Hz = - gind 3A/3p

' 1 2
Ez = j’ﬁ? cos¢ 3 A/3pdz

The results are Eg. {2.14).

In Fgs. (2,13) - (2.16) I 1is the current that drives the di-
pole, 1 the equivalent lingth of the electric dipole, A the area
of the current loop that constitutes the magnetric dipole. Hori-
zontal dipoles can be simply obtained by a rotation of coordinates,
which ammounts to change cos$d to sin¢ and éin¢ to - cosé.

We note that a vertical electric dipole excites TM wave only and

a vertical magnetic dipole excites TE wave only, both involve
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Hankel functions of zeroth order; whereas horizontal dipoles excite
both T™ and TE waves and require Hankel functions of first
order. An arbitrary oriented dipole can be treated as a linear

-~

combination of three dipoles along x, y, and 2z axes which are

~

just described.
2.4 DIPOLE ANTENNAS OVER STRATIFIFD ANISOTROFPIC MEDIA

Giometrical configuration of the problem is shown in Fig. 2.1.
There are n slab regions, and the last region is numbered t
instead of n + 1, for the sake of simplifving writings. In each
region labelled i, solutions of electromagnetic field components
take the form Eg. (2.8) with all quantities subscripted by i. 1In
the 0th region where we have the antennas, A, = E, and C4 = H,
which are known from (2.13) - (2.16) for the three types of anten-
nas under consideration. In the last region namely region_ t, it
is semi-infinite and we do not expect reflected waves, therefore,
B, =D, = 0.

Boundary conditions at all interfaces are that all tagential
electromagnetic field components must be continuous for all p and
¢. Consider the boundary at z = _di' the continuity of tangen-
tial electric fields and the continuity of tangential magnetic
fields vields, for the T waves,

: (e) . (e)
(e) ) ik d, —1k_ d.
ks, {- Aje iz i, Bye iz iy

.1 (@) )
=k (& ke z 9 -ix (%)) a,

(i+1)z { ~ A4 +Bju € (1+1)z74, (2.17a)



ik {e)d "".k (e)
) iz i ilK . d,
e; {Aje | ‘ + B, e 1z 13
... (e) (e}
ik d. ~ik .. d.
. (i+l)=z “i + 2.17b
and for the TE waves
: {m) . (m)
ik, d. -1k. d,
r iz i iz
y; { C,e + D;e 1y
, i M,y -ik (M a4y (2.18a)
= 41l Ciyg @ | +Dj4p | }
“ m i, (g -ik, (Mg
kiz { "Cie iz i, D;e iz i}
ix  (m) d -ik (™
oy (m (i+)z % 1K 1+1) 294 (2.18b)
kejeryz { Ciy4 © * Dia1 (H1rz1y

The reason that we can treat the T™ and TE cases separately is
because that 1) for vertical dipole case, only ™ or TE is
exciteds 2) for horizontal dipole case, although the total tan-
gential field components consist of both TM .and TE waves, the
coefficients of Hl(ll and Hl(l)' separates ™ and TE cases.
We now illustrate the derivation for the upward propagation

matrix Mi1_+ 1 for T™ cases. From {(2.17a) and (2.17b}) it is

. _ : (e) o i {e)
straight-forward to solve for Aiexp 1kkz di and Biexp 1kiz di
in terms of Ai + 1 and Bi +1° Define

) 4. (2.19a)

a. = A, e ik, .
i i xp (i iz i



(e) a

b, =B, exp ( - lkiz } (2.19L)

We have

a; = %'{e(+)i+l e(+)i(e)ai+1 + s(-)i+1 e(-)i(e)bi+1} {2.20a)
by = 3 (e en) Da L +eni™ e, ¥y, 3 (2.20b)

The upward propagation matrix for T™ waves from (i + 1)th region

to ith region is defined to be

[e(+)l+1 (+)(§) c(-)iil e(_)(i) )
i+l
MH-,: =‘;' , (2.21)
el 1 e © ettt o) (@
where
c (e)
P _ ._.E _P_
e(+) ( e (e) )
qz

(e) (

e(t)(i) = expl+ik iy, (& - @ )]
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(e) _
kiz_‘\/kiz-kpzfa

Equation (2.20) can be written as

4 3 3\
2 . ( 2i+l
i+l
=M il _ {(2.22)
] bi'J L bi+1 J
™ ™

Note that, with R denoting reflection coefficients and T

denoting transmission coefficients, we can write

e (2.23a)
a0 = E0 exp (ik z do ) .
by = R E, exp ik, % (2.23b)
™ .k(e) a )
a, =T Ejexp (ik',° dg (2.23¢)

ahd that bt = 0 because there is no reflected wave in the last
region. The parameter 4. in (2.23c) is introduced for convenience,
it does not correspond to any distance and is always multiplied by

e(—)(ﬁ) to vield exp(ik(ﬁ) 4

2 n)' The definition of the propagation

matrix is a useful one. Once wave amplitudes in any region are

known, those in the regions above this ocne are all determined by
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(2.22). Thus the propagation matrix (2.21) propagates wave
amplitudes upward. We can also define a propagation matrix Mi i 1

which propagates wave amplitudes downward.

__ \
( i (e) 4y 1 _y (&)
€(+)i+1 e(-} i 8( )i+1 e( ) i
i 1
Mir1 T2 (2.24a)
) i (e) i (e)
\e(—)i+1 e (+) i e(+)i+1 e(+) i )
qi+1 ay
- i - 2.24b
and Miv1 ( )
bin by
It is easily shown that
i+l i _
M7y Mygn= 1 (2.25)
Following a parallel analysis of the above, we define a
downward propagation matrix Niil for TE waves.
[ i {m) i {(m)
i+ g e(=) ", u(-)i+1 e(-) ", W
i 1
Nibl T2 (2.26a)
' i (m) i (m)
| w-) 4 e(+) i “(+)i+1 e(+) i

A



i+l . i

Ni+1
i+l i

i+l

An upward propagation matrix N i
i
Nja
i+l (m)
. ].I("') i e(+) i
i+l 1
Ny =3 |
i+l (m)
w-) 1 €M7y
¢ h )
€3 Ci+l
i+l
= N7
4 941 |

In (2.26)Iand {(2.27)

" k(m)
u(+)P = 2 4 _%ET
- d p-q_km

qz

o . (m) -
e, = ci exp(lkiz di )

.. (m) .
= - d.
di Di exp lkiz i )

(2.26Db)

is defined as the inverse of

u(=)

p() 1L oy (0

i+l

(m)
i e(") i

i i)

(2.27a)

(2.27r)

(2.28)

(2.29a)

(2.29b)

(2.29c)
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TE TE -
Also Cy = HO' dO = R HO' Cy = T Ho and dt = 0. We note
+hat for vertical magnetic or electric dipoles, only the TM waves
or the TE waves, respectively, are excited., In the case of either
a horizontal electric dipole or a horizontal magnetic dipole, both

™ and TE waves are excited.d
2.5 REFLECTION COEFFICIENTS

In the interferometry method, our primary interest is the re-
flected wave fields. From the preceding section, we have established
that when the wave amplitudes in region 0 are known, solutions in
any other region can be determined by using the downward propagation
matrices (2.24) and (2.26), 1In this section, we derive for the re-
flection coefficients, a formula which is expressed in continuous
fractions. We ohserve from Eq. {2.23) that bt/at =0 and bG/a0
gives rise to the reflection coefficients RTM. And from (2.22),

an expression for bi/ai in terms of bi + l/ai + 1 can be easily

extablished. In view of (2.21), (2.22) gives

b, e+t o S A S R S e S
AL - )
a, _ i+l i+l _yi+l + (e)2

ioel=)7y e(+)7," / e(-) i (e(-) i) (bi+1/ai+l)

(2,30}

Making use of (2,30), we obtain a formula in continuous fraction

for the reflection coefficient RTM



: 1 1 1 1 1
e(+) e(+). / el=),. = e(=), / el+)
R:M = exp(iZkZ(e) do ) g {1 - r 0 1 0 1 0 (LJ
e_(—)0 e(+), / e(=),
(e} et+)? e)? /el - el /e
+ exp{izZk iz (dl - do)) 5 [1 - > > _
: E(-)l [ e{+); / el-)y
' ('2k(e) a -da_ .)) e(_)i 1} (2.31)
F sevsee sa + exp(1 2 { a = 9h-1 e(+)t ....... . .
n

Likewise, we obtain the reflection coefficient for TE waves

1 1' 1 .1 1
ui+) TTCD PAVARTIC) PRI C) WOVARTIC )
R =-exp(i2k(2)do ) ————£L-{ 1 - l o 0 0 ‘ OJ

wis)g / w-)g

i w2 /u=rd - e i uwm?
(@ - a)) —S [ 1-——
2 2
.“(')1_ | ul+)y1 / l-l(')]_

(m)
lz

+ exp(i2k

b rexpize™@ - a ) —2 L 1. (2.32)

The subscript n on R™  and R'F  denotes the number of layers

involved.



2.6 SUMMARY

With the reflection coefficients determined in the last

section, we can now summarize the formulas for all field quantities

in region 0, where interference patterns are calculated.

We have

decomposed total wave fields into a summation of the TM and TE

wave modes.

E=E +E"
H = ETM + ﬁTE

The TM and TE solutions are

1) For a vertical electric dipole
(o, X
ik“(+ e +
p
oo
'E:TM - I ak (- = I8 )
Yo P TWe
X +1¥%%
I (e 2
X (e)
\ Z
2 ey
ﬁTM ~ a:dk ( 12 ‘_kp jlkzz
- I B Sﬂ) ire (e
-0 z

(2,33}

(2.34)

{2.35h)
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'2) For a vertical magnetic dipole
[ 0
2 () o)
oC k +ik =z ik =z
—TE Ay | S T e T2t ()
E —Idk( Bn) l"]:(,ﬂ(e + R e )0 (pp)
Zoo z
0
‘ J
(2.36a)
(m
( > iiﬁ:% TE ik =z (1) 3\
ik (+e + R ) B (k _»p)
P Y P
. - .
ﬁTE=jdk (-ig—A) 0
Yoo P w
kp  HKZ g i@" (1)
— (e + R e ) H (k p)
k 0 P
|2 J
- {(2.36b)
ETM = HTM =0

3) For a horizontal electric dipole along %-direction
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For a horizontal magnetic dipole along X-direction

i1%% 3\
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2.7 DISCUSSIONS

3

Tﬁe problem of radiation of various dipole antennas over a
stratified anisotropic medium has been solved. In view of the
general formalism as presented in sections V and VI, we can make
the following observations;

1) All medium properties such as the éonstitutive parameﬁers and
the ge¢metfical configuration are all absorbed into the ‘reflection
> coefficients RTM and R?E » Which is readily computed by Egs.
(2.31) and (2.32). Clearly, when all regions possess the same

constitutive parameters, namely when there is no stratification,

2) Since the anisotropy in permittivity appears only in e(t)

and the anisdtropy in permeability appears only in u{4), it is

seen from (2.31)-(2.34) that R™M

does not depend on the magnetic

anisotropy and R?E does not depend on the electric anisotropy.

‘Both RTM and RTE are seen to be even functions of k ,

S

3) It is obvious from (2.35)-(2.38) that a vertical electric dipole

-

excites TM waves only énd a vertical ﬁagnetic dipole excites
TE Qéves only. Whereas both horizontal electric and magnetic
dipoles excite both TM and TE waves. In the case when
permeability is isotropic, the TM waves are extraordinary
waves and the TE waves are ordinary waves. A turnstile
antenna which consists of two dipoles perpendicular to each
other and driven 90 dégrees out of phase also exciteé both

™ and TE waves.
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4) The above formulation can be compared with the potential
approach for the various cases that are existing. In the case
of no stratified medium, the results are checked by using the

identities

SO Sy ¢ DR ¢}

1 E;E 1 5 ' , (2.39)
and
o« ik z k :
i z p {1) _ : 2 2 2 2
5 .f_” dkpe E—; H (kpp) = exp (1k/p + z )//p + z
(2.40)

where r2 = p2 +sz in spherical coordinates. We define the

number of layers of a stratified medium equal to the number of
boundaries. The medium below the nth boundary is called the

tth layer.

5) The one layer case (or half space) has been extensively

studied. We obtain from (2.31) and (2.32)

1 .
e(~) _
R = 0 oxp (izk;e)dol (2.41a)
e(+)
- 0
p(—)1
RE - 2 exp (i2x™a ) (2.41b)
z 0 .
wi+) g

In the case of a perfectly conducting half space,

. ~ _TE
e = €, — . Eqg. (2.41) gives RTM =1 and R = -1,
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6) Observe that all contributions due to all layexs below the

first are lumped into the reflection coefficient R 1 such

that
. 1 1 1 1 1
e (+) e(+)_/el(=)_ = e(-)_/e(+)
R§MA = exP(iZkz(e)do) g a1 - ? 2 ? (eSO ™
el(=), e{#) /el + expbi2k, 'd IR
(2.42)
TE oy, WS N S SN O BN T e
n = exp(12kz _do) (_]I - (+)1/ (_)1 + ex (—iikTﬁ)d )RTE
‘ L o) Lo o] LR Pl iz "o’ "n-1
{2.43)
ey s ™ TE .
The definitions for R _; and R _, follow directly from (2.31)
and {2.32).
In order to make effective use of the results obtained for
ation

the one layer case, we follow Wait (1953) to define a stratific
factor for conductivity dominated media such as the earth. For
a vertical electric dipole on the ground, the electromagnetic

field quantities can be written in terms of one single integral

ik _z

® kaél)(kpp)e ‘

Jo= [ dk, (2.44)
- B

k +0 = k

- 4 e gy 1

z

The field components are

H - (_ I 3Je ’ .
o Ir ° 3p ’ (2.45)
E = (- e ) a '
p v Trnwe 7 3poz (2.46)
2 v
2 : .
E = (- pa) (25 +K) I (2.47)

z ' 3z

)

)



The integral Je follows from Eg. (2.35)., The stratification

factor; Q is determined to be

T™
1l - Rn—l

Q = — '
e TM : . (2.48}

1l + Rn-l
Under the assumption that the stratified medium is conductivity

dominated such that -ki:)= ki ' Qe is then seen to be a constant.

kpz/qu =ve 7eq , and Je becomes

ikr -P
J, = 2 %—-— (1 + (ﬂplll/z e 2 erfc(i@z)] (2.49)

Eg. (2.49) is obtained from (2.44) for far field and observation point

near the surface such that kg?>> 1l and 2z/p << 1. In (2.49),

k™p klz 2
Pp=1— ' P, =P 1 4 &) (2.50)
2k (o]
1 .
and erfc 1is the complementary error function. Replacing kl

by Qekl , we obtain an analytic solution for a vertical electric
dipole on top of an N layer stratified media.

for the case of a vertical magnetic dipole on a stratified
medium; all electromagnetic field components can also be
;fiffeh in ferms of ohe singierintégral J, + The stfatif%cation

factor O can similarly be determined from the reflection



2-31

coefficient r'E . Under the assumption of high conductivity,
1~ RE '
0, = ——gp— (2.51)
1 + RE
n-1

ik =z
(1) *
kao (kpp)e

J = {2.52}

B
kz + Qm ul k1
Eas. (2.51) and (2.52) are dual to (2.48) and (2.49). The stra-
tification factors Qe for a two layer ground has been calculated
by Wait (1953). 1In Figs. 2.1 and 2.2 the amplitude and the phase

0O are plotted versas Jmucl dl for the two layer case. QO

m

is seen to drop to near unity as fﬁﬁbl dl becomes larger than

1. Thus the effect of the second layer diminishes as 4, » (wudl)_l/z.
In Figs. 3-6, the amplitudes and phases of both Qe and Qm

are depicted. The depth of the first layer is assumed to be

dl = 2(muul)_l/2 . 'The ratio (02/01)1/2 is set to 0.5, and
_(05/02)1/2 is used as a parameter. As dz-dl becomes larger
than 1.2(mu02)_1/2 , both [Q,| and |g | drop to within °

about 6 percent of its final value. Beyond that we can
safely omit contributions from the last layer.

7) The inteagrals as presented in (2,35)-(2.38) can be directly
programmed with a computer or analyzed analytically. Asymptotic
evaluations of the integrals and numerical results for the
.electromagnetic field quantities ﬁn&er various circumstances

constitute topics of the subsequent papers.



Chapter 3.

3-1

DIPOLE ANTENNAS ON A HALF SPACE MEDIUM

3-1 FIELDS IN THE LOWER MEDIUM

For a horizontal electric dipole above a lossy dielectric

‘half space, the electromagnetic field components in the lower

medium (i.e. the field components of the transmitted wave) are

listed as follows:

o

ETE =

-

¥}

f dkp

-—0

ak
I dk,

/ _sq, (m)
KIlmut 2 . lktz
8w (m)
UWATHR SR g4
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-1k z

pe3 e tz singd
T owgm o+ kD

r
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kzp
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L
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key

kz

(m)
ktz

kzp

k 2
P

bk
z

H{l)(kpp) cosd

Do) sing | 3.1
Q
N
H{1)|(k?f) sin
1
H{ )(kpp) cosé (3.2)

H{l)(kpp) sing
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- xp ktz Hy (kpp) c05¢5
i
‘ ., {(e) (e}
o -ik 2z k
_TM IL 2 tz tz H(l) (k_p) sing - (3.3
M - oax - —1T © 1 P .=
e 8 nrwe et kti p e
- — o m—
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z -
-1 kp2 H{l’(kpﬂ) cosé 1
L2 J
4 (1)
H1 {kpp) sing
: o L s (E)
Ite -ik Z :
IT™ = s ak LI : e © * ko Hil)'(kpp) cosb { (3.4
8ne € k
- _'t_ + tz
[ k
4 0
— s

A typical integral to be solved takes the following form

(2

~ikg 2"
xR P ak, 5 2<0 (3.5

The first order Hankel function is the negative of the derivative

- of the zeroth order Hankel function. In the above integral



Two points are to be noted:

1. The path of integration along the real axis of k%
is actually undefined for strictly real k because
the branch poin# kp = k then lies on the path.
There are two remedies. One is to assune a vanish-
ingly small imaginary part for k. The other is
to choose the Sormerfeld path of integration.

2, Taking remedy into account, ﬁe notice that there are
two double-valued functions in the integrand viz.
~kz and klz . Thgy must be well-defined along the
bath of integration. They are defined as follows:

Along the path, Re kg >0 , Im k; >0 ;

Re kg >0 s Im. k,_ >0 .

- To facilitate solution of the integral,
the conformal transformation kf‘ - k. Siﬂﬁ is made , so

that the integral becomes

2 o

I=k [ sinp (/ne"'e P 1 (, psing) 48

where

_ R owsp
A (P) R, oS + e
C is the original path in the ﬁ
plane. If kl ig strictly real , C first runs from

- 4im to “% and then along the real /5 axis



to 7 and then from -%Lto T-iw . When X, is
slightly conductive, C is slightly shifted with
its position as shown in figure 3 1.

Now, in this S plane, only

R, =d R* -k sin’s  is a double~valued function. The
branch cut Im k.z =0 is drawn. On the top sheet,
Imk,> 0 , and on the lower sheet Imk £0 .

The path of integration € lies on the top sheet, The
path C is then de.tourec_i to a path such that along the
new path, the argument of the Hank.el function is always
big so that the Hankel function can be expanded asymtot-

ically.

o . _ £m.s4p-¥d — !
H, (k,/).‘imﬁ) =g Y ﬁ/_m (!+W)

-

-i¥ | -k, +ikpsm
Isji,;/-;-s e ISMﬁA(p)e Rear s p(Hm)dﬁ

The exponential arising from the

asymtotic expansion of the Hankel function, combines
with the exponential in front to give thgcos f,ﬁ-d)
where. of = 't‘q_n 'Tgl‘ . Therefore, there is a saddle
point at [3-: + The branch point due to k, is at
8, = 6,' + ;_ao" . Because k, has a small imaginary
part, therefore 0. is complex. For slightly o
'

conductive material, 6, is approximately the critical

]
angle, 6, , on the other hand, is very small but negative.



The location of the branch point and branch cut are all
marked in figure 3.1.
| The problem, that is next faced, is to

detour the original path C to the saddle point steepest
descent path. Thefe are two different detours for two
different regions of interest. For £ smaller than‘ﬂ:,
the ‘detoured path starts at - % + (0 . goes to --E + &L +L00

; and then goes down the path of.steepest descent
passing through the saddle point crossing the brahch cut
twice and crossing the real axis at the saddle point in
between, and then gbes down to -} +eo - Loo and
from then back to the end df.the original contour at
ST -iem . On crossing the branch cut once, the
.contour gets onto the lower sheet. On crossing the
branch cu£ agaih it crosses back onto the upper sheet,
The dotted portion of the path lies on the lower sheet.

| The integrand is analytic within the domain
of the enclosed contour and along tﬁe path, and by
Cauchy's integral theorem, the line inteqral of the
ofiginal contour is egual to the line integral of the
new contour. Notice that although the domain enclosed
by the two contours lies on different sheets, the function
is still analytic along the contour and in the domain.
On jumping to the lower sheet, the function retains its
continuity. On the other hand, if it jumps acoss the

branch cut and stays on the same sheet, the function is

discontinuous at the jump. Also, in this case, since



the new contour crosses the branch cut twice, going
down‘ and coming up again to the upper sheet, it can meet
i:he.other end of thé original contour and forms a closed
loop. 7.

[}
Therefore, for « 1less than 8, ,

s vk, R t . ,
=24 [0+ TRF (B0 cob « ')

where '
R, cos

H () = R, cos +[kz-h.25ih2°(

In the above expressiori, the double-valued function
k; ‘Jk"-b,"sin‘o{ assumes a positive real part and
a negative imaginary part. This is because the saddle

point, as can be clearly seen from figure 2a, lies on

the dotted portion of the curve and thus lies on the lower

sheet, And , on the lower sheet, Im kz<0 .

Physically, the saddle point corresponds
to the aﬁgle of observation in the lower medium.

For o bigger than 9,' , 1.e. the
observation angle greater than the critical angle, the
branch point contribution has to ?e included and
the originél path C is detoured in the following way.
(Fig;tlre 3.1b). It starts at - ‘g‘ + i and goes to

O+ ({w , goes down the left side of the branch cut



on Epe upper Rieman sheet, goes around the branch point,
back to © + i on the right side of the branch cut
on the upper sheet. It then crosﬁes the branch cut onto
the lower Rieman skurface, goes to --} + o+ i  and
from there, follows the steepest descent path, crosses
the branch cut again 5ack to.the upper Rieman surface,
qcrosses the real axis at saddle point & , goes to 'g:+ o{ ~iw
and finally connects back to the end of the original
contour at 'g - L 00 . Therefore, summing up, there

are two contributions to I : the saddle point path

contribution Il , and the branch cut contribution _Iz .

The saddle point lies on the upper sheet. Therefore

L= 2 &= [A()+ ghg (A + wta H'coo)J

kl Cos o

A(x) = R,Cos& + JRE —RE gk

and kz assumes a positive imaginary part and a corr-
esponding negative imaginary part in the above expression i
since on the upper sheet, Im kz> o .

At this point, it is convenient to adopt the
following convention. We denote m { the
square root sign )} as always having a positive real part.
Therefore, going back to our analysis, kz can be either
+ [ ks » o = [RPRTsintw depending on the sheet

the path is lying on. With this convention, the solution




is re‘written as follows:

for oL less than 9,‘ ‘
ikr .
= "E"Lg,—" [H(“)J"’.Ei._'k-} (FI (x) + cot ﬁ'(“))]

:where, k. cos o

A=) = Resa+ R psnia

?
for o greater than b, ,

ih,R
I, =% (At + .ZiL,R (A"(«) + cat x A’ ()]

where,

A () = k, cos x
k,cosx = Jk* -k *sina

To evalunate the branch cut contribution
Iz, much care has to be exercised. The branch cut is
defined by Im kz= 0 . On the left side of the branch cut
Re'kz> 0 , while on the right side of the branch cut
Re kz<0. benoting the positive side by B, and the

negative side by B_,

I - E- ¥ ok A () ik, Reos{p-u)
o ﬂr J;mﬁ-i-m p ﬁ ¢ dﬁ
up B_ ‘

2k, -i¥

2R, R | {h,Reos (B-ot)
= A7 € [is‘smlﬁﬂqﬁ)e dp

. -g-. ' iR,R cos (A - |
+£B' Sih [5 H(/s)e d_/;]



{ Up means from branch point to ® o)
The above integral can bhe combingd'in two
forms, either by changging B_ into B_ so that both integrals
are written as 'B+ , or alternatively, by converting B,

into B to have both integrals in terms of B_ . Thus,

theré are two forms of 12 :

i I i -
-i f % 2 ihRcos(f-a)
I‘ a [2k f sin ._é'.;ﬂ‘;r_a_e d/s
6 “a ks |

or

kR ok (p-a)

| iE 4
- J e ntp ek o
- wb :

Botp give the same answer.
' The next step is to detour the path, either

B, or; B_ , to the steepest descent path passing through the
,hranch point. ( Note: one must'disﬁinguish between the |
‘steepest descent path passing through the branch point and
the-stéepest descent path passing through the saddle point.)
The position of the steepest descent path BS through the
branch point is clearly depicted in figure 2b. It lies to
the left of the branch cut. Therefore B_ can be detoured

to BS by simple application of Cauchy's theorem. Therefore

-

ik Rcos(f3-2) _ .
—aa hi!'. z 4 .2 dﬁ
Ricos’ - R+, sm/i [

« .
= [28 o o s'm% k, o
Ig g : /% ( yﬁe

On the other hand, if B+ is‘to be detoured to BS , one needs

to cross onto the lower sheet and subsequent calculation



needs to be performed on the lower sheet. This is unadvisable,
If , it is quite plausible, one is not careful enough to
follow the above step by step, one can easily just detour

B+ 'to BS and arrive at

. ih.Rcas(/Q-u) _
TS <+ = 1 2h
L= _/.f% e ﬁjs sin® 8 k cosfBe o e 4

This is the negative of the cor.rect answer and is wrong.

The contribution of BS mainly comes from
around the branch point. By applying the method of
steepest descent to the above integral, one obtains (Appendix
I)

2 e,-iaz + ikf
= e— - F
Ia P" a’* G-Cotdtanﬂ,)"‘ ;i e~ k, -k

- Finally, in summary,

L4
for oL less than 8, ,

ik, R " ’
I= _,"3_._3;}._.{__ [ﬁfﬂ)"“m (A"C) + cot . A ("Q)]

L]

where

At = R, cos o 5 Im k <O

Ricos  fr¥ kg

for ol greater 9,,' ’
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| Lk, R | -
2 : ! "
I=7 eﬂ. (A oy + ZihR (A'() + cotoc,q’(a.)jj

2 K e—iai-ﬂ-i.hp 7
+ PT GT (iCet < T g7 5 . Im k2o
where,
-k.t:as«.

Al = posu - B hiamw

Several physical observations can be made.
For of greater than 6,’ , there are two waves, repre-
sented respectively by the first and term in I. The first
term corresponds to the spherical direct wave, and the second
term corresponds to the flank wave. From the equation, one
~also notices that if ky is strictly real, both terms blow
up at & = #, . Mathematically, this is to be expected
because thé saddle point collides with the branch point.
Actually when the saddle point appfoaches the branch point
and gets near to it ( this also applies to the case of
complex k, where oL is never exactly equal to b, )
¢ -the saddle point method breaks down. The area o = 6,
s _is the area in which the two waves interact and théy have
to be considered together and not separately. A detailed

discussion is given in the book by Brekhovskih3 .
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by most authors. The advantage of ﬁsing this branch cut
is that it can be detoured to the steepest descent path
éassing through the branch peoint. In the following, it
is shown ﬁhat the same answer will be arrived at even if-
a different branch cut is chosen. The different branch
cut is Re kz =0 , Solution with a different branch cut
vields the same answer means that the choice of different
signs for k, in the two regions & < 3,' and of > 8,'
'is absolute and is not arbitrary.

With the branch cut Re kz =0 , and after
the kf‘ = kl sinﬁ transformation is made, the same integ—-
ral is obtained but with the picture in the complex
élane changed as in fiqure 3.2. BS is the sﬁeepest
descent path passing throuch the branch point. On the
top sheet Re kz>t) , and on the lower sheet Re kz<f).
On:the top sheet, vhere the oxiginal path lies, there is
the positive side of the branch cut §+ where Imk, % 0 ,
and the negative side of the branch cut B_ where
Im kz { 0 . The most important observation is that, ih
this case, the branch cut , no matter whether the B,
side or the B_ side, cann?t be detoured to the steepest
descent path BS through the branch point.

Analysing the integral as the case with the
branch cut Im k, = 0, for o< Bo' , the saddle point
lies on the upper sheet and Re kz>t) .

vh, R
I = ._.ﬁ-'...._._ [Aex) + zl.h,R (A’ (x'.)+cat0(-tq(°¢))]



Notice that the saddle point contribution in this case
] o
is different from the corresponding I1 in the case

Im kz == ) because in that case Im kz >0 and in this

case Re kz>0 .

Analysing I, the branch cut contribution,

ik, Rcos (p-et)

o4
sin > A A (R) (1 +55573)d
s PR Bikpsinpl o

own B
B8,

'

I_. 2_._'.e “f
2 - T

/) d

H-P

i L | L : 7
_ 2h Lo . 2 tk,_g cas(ﬁ-x) -
= J‘Ff)" e | IB Sin [3 R, casﬁ e 1+ Sch,fsfn[i)
. 4 ©-

2R

kiws'p kv ke snia 4B
- & "‘fj Lk, thRes(p-e) 4 -

> e sin /3 e (i Smck,pw‘nﬁ> Dipy dp
p 8- | - |

( Again, up means from branch point to to . )

where,

_ 2 kg k cosf _
DI = Riasak v kismp 5  Re k 20




where,

k, cos e

A(DC) = k,cosm+A/h2-#,Zan2°¢ 3 Re L’z pge;

Therefore, the answer éhecks with the case with branch cut
Im kz =0 .

In the case o« > 90' , there are , as in the
case with branch cut Im kz = 0 ., two contributions ; one due
to the steepest descent path passing throuah the saddle
point and the other due to the branch cut. The branch
cut qontrj-bution, however, as opnosed to the case of branch

cut Imk, = o, is of first order effect.

) Set
| I = Il+I2
vhere I, = contribution due to steepest descent
path through saddle point.
1, = branch cut contribution
then, .
- ik R

=% 2 [AG) + 7z (A700 + cot < A'w)

where,

Alw) = R cos : Re k, >0,

R.cos iz “Risin’s 3
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TQe path B_ cannot be detoured to BS. To evaluate the

contour integral along B_ , the path B_ is detoured to

a path consisting of two parts: the first part Ly extend-

ing from the branch point to the saddle point, and the

second part L, extending from the saddle point to

dowvn the steepest descent path. By Cauchy's theorem

‘L =i!s i JF'

Therefore,

where

-12 =£ +L- Js{.p"fi
BRSS!

= -2 &

ik, R I -
R [D)+ Fge (D'() + cot o D’coc))]

5 b e.»t'az tihp
+ /’* a* (I-cot ec-tan , )7z

Do) = LIk -RIsinTa R cosel
kst —khi+ R sint o




Combinina these expressions, one has

3

I =1 +1
th,R | ‘
! , i 1
—f-gR—- [CT(,,;) + AR (G () + G () catoc]} |
—iaz + ik
+ -2_ h tag + P
*a® (l-cot w fan 8,72

/l

where G() = Alol) + D ()
= A () of the case of branch cut Im kz =0 .

Therefore, in s{mmary, the answers are identical
whether the branch cut Re k, = 0 or Imk, =0 is
chosen,

For TM waves of nonmacnetic material,
- . _ k
on the top sheet, there is a Sormmerfeld pole at Sin 91{”~ = W

in the denominator. Its effect can be neglected by the

’ -
following reasoning. Yhen o £ 8, , o lies on the lower

sheet ( branch cut Imk, = 0 is chosen. ), while 8., lies
on the upper sheet. Thus the pole is not enclosed between
the original contour and the detoured contour. The pole

. 1
does not contribute anything. Wwhen o > B, , the
analysis is slightly morc;complicated. When the original
path C is detoured to the saddle point path P , two

contributions need to be considered : one due to the branch
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cut B, the other due to the residue of the pole Pl be-
cause in this case, the pole does lie between the original
contour and the detoured contour. But, in evaluating B, it
is detoured to the steepest descent path BS, and on this
detour, Pi is again enclosed, and this time, its contri-.
bution is exactly the negative of the residue and thus can-

cels out exactly the previous contribution. Summing up, P,

does not contribute both for a < 90' and o > eo'. The
only contributions come from the saddle point and .the branch,

both of which have been discussed already.
3.2 RADIATION PATTERNS

In this section, we analyse the radiation pattern
of the horizontal dipole for the half space case. The radi-
ation pattern gives information of the angular distribution
of the radiated energy. This information is of crucial im-
portancé if the interference patterns for the two layer case
are to be explained in terms of ray optics.

The radiation fields are of 1/r dependence. The
1/r term, in this case, corresponds to the first order term
in the saddle point contribution.

For the half space casé, with the dipole on the

surface, the reflection coefficients are

Rne T N ) RTM . _E ke~ ER,
kg +:/u.k|i 4 €,k + € Ry



The electromagnetic fields , to first

order are the following.

For the upper medium:

chr '
H o - "?‘ "gT.—" i h sinp Kot (8) gin o
£ 7

16 Ilwie e BT :
E,S = hni T F X, (8) sin @

It thr '
H(’ BTy e,. R cos 6 X“CB)sin.Gi

ch

™ Il € i 2
E{, = Ta4piwe r R ('0329\(10 (8) s @
ke
™ It e ' P :
Ei = Mot v Lk s:nB cos O Ym (8) cos &
= It eikr-

%T" = ~au 7 hkcose Y, (6) cos &

For the lower medium :

TE _ .LL eih,r . .

H.E - 4r r Lh| Sun oL /YM (0{) Sin ¢
TE  Tlww, e {R,F

E¢ = Tary r Xm () sin @

TE If e (k-

H{’ = Inrl —F k‘cosoéx,,(d)sinﬁz

™ Il e cher 2 2
E{: T 4miwg r hi_ Cos oL Yo, () cos @
™ If e thir

B, T Erag, F— Lk sin o cos Yor (0) cos ¢



t R4~

™ I e :
Hg‘ =i TF R,coset Y, (%) cos &
vhere, .

i

- R = fkia = u; b
l" }llj kil +ﬂ‘ hj*

S = €ikiz ~ E.kja
§ " e, k.@ g by

| + R'I.J = zﬂqbu.i

X;j - HRa ! k;!
2¢; ki
- .= s
Y,‘_} = 1 + SLJ, Ejk"* ""Ei.k}a

# is the observation andgle .in the upper medium and
ol is the observation angle in the lower medium.,
The Povnting vector is 5 = Re (-{-(Ex g*))
Denoting the radial component of the Poynting vector by

Sr , we obtain , for the upper medium

S, _._.L(I_l)a[i:é‘_k X: () sin’‘g + -%f— k cos'® Y,:(G’) cos:ﬁ‘]

for the lower medium,

S ‘*‘;?L(Tﬁ}[ R M,,,tet/{ sin’p + <= R, o5 " 1 Yo (0] cos pj



The maximum power radiated into the
lower medium is at the critical angle for broadside
( ¢=90 and at the angle sin” ("ffﬁ
for endfire { @ = 0" ). These values can be obtained
by setting the derivative of S, with respect to the
ebservation angle egual to zego. Another interesting
observation is that for the endfire radiation pattern, Sr
is precisely null at the critical angle. A quick way to
explain this is that the free space radiation power is
zero along the endfire surface, so that there is no
" incident field " dinto the dielectric at ¢ =q0°
when the dipole antenna is put on top of the dielectric
medium. Another observation is that along the surface,
fields are of second order effect, and thus the radiation
power is zero along the surface. If kl contains an
imaginary part ( for conductive ﬁedium ), however small,
the radiation is null in the lower half plane, because,
by- definition, the radiation pattern is measured at infinity.

The Im kl gives rise to an exponential attenuation with

distance and the power vanishes at infinity.

3.3 FIELDS IN THE UPPER SPACE

In actual experiment, the receiver is
placed above ground, so that, we are actually interested
in the region 2z > 0 for the half space problem. The

transmitted wave for 2 { 0 is interested not in the



half spaée problem, but, as has been mentioned,_its
solution sheds liaht on the two layer problem which will
)

bé discussed in the next section.

For z > 0, a typical integral to be
solved is

I ==-fm’_éﬁ—._5a_. Htﬂ (k h)
J Re kit rl e d'kf"

Notice that this inteqgral is different from the trans-
mitted wave integral in that klz is replaced by kz .

Let %
Blk) = Tow

In this case, the conformal transformation is

kp = fzsuyB
The saddle point is‘at [ , where g is the obser~
vation angle in the upper medium, o = tah-hﬁl .
: A
The branch point is at = gin %& 6 -1,

The branch cut chosen is Im k;, = 0. The equation of

the steepest descent path n paésing through the saddle

point is Re kR ces(p-8)=kR . Let's take ky, to
be strictly real for the time being, so that g/ =T
cosh 8," = %%‘ . The'steepest descent path passes

-

through the branch point when
Re hRcos(8,-6) =gR
coS(B,'"BJcash_ 9.” = ]
.. sin g =4E—



and this turns out to be 8, , aquite a coincidence,
Therefore, for § <§, , only saddle point contribution
is needed, while for €@ 2§, ; branch cut contribution
needs to be included tooc. The branch cut contribution
is to be carefully manipulated by the B, and B_
approach, and also by using the method of steepest descent.
For the Tm wave, the Sommerfeld pole does not contribute
by similar reasoning.

In summary, extending also to slightly

conductive kq toQ,;

for 9 <« 6, '
(RR

2'e A ’ P
I =T5 (B + 35m (B(Det o + 8% ]
for ¢ >g,
2 o kR i , )
I= 7% [8(0)+ 57 (80 cot 6 + 8”(0))]
2&] e-‘!*ik‘/)
T paf (I +isect, co g
The double-valued function k has its imaginary part

1z
bigger than 0 on the upper sheet. Since for both regions

of interest 6 <4, an@d @ >§, the saddle

lz>0

point occurs on the upper sheet, therefore Im k



in the above expressions.

As can he seen from the expressions,
for @»8, . there are two \-rdves , the first term re-
- presenting the direct wave , and the second term the
inhomegeneous wave. The inhémegeneous wave decays
exponentially away from the surface. Tts magnitude
is greatest on the surface where it interferes rost
significahtly with the direct wave. To do detection
of eclectromagnetic properties, we know that for two
waves with different wave vectors k and kl , the
peaks and troughs are separated by a distance.of

em
a4 = F,"h.

On'Lhe olher hand, 1if we know O

then k can be.determined. |

1
cn- the surface,

Y
a P"'

I""%' k eihp_ _2_"'_3':&'[’
r
Actuélly, thé exact answer can be
obtainéd by the following steps of algebra due to
Van Der Pol. Use is made Qf the following identity :

iR . o .
e _ & ko thZ
frd = ? f &t € * Ha (kpf)) d k/,

The integral is

® R, {)) .
= [ 5w W (e dby



= BT [ Chok, -k R HO k) d,

j: kaky Ho (k,p) d ke, = [‘a%t £ %R L

o ' ' 3 {hR

L ko kg Ho“(g,(,)athr = [";;E £ & Lo
, _ thp iR, .
L IEE [P A ik - 2 erzp(c‘k,-—(,‘-)]

The various interference and radiation patterns due to different

half-space medium compositions are presented in Appendix A,
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FIGURE CAPTIONS

a., The complex p plane for the transmitted wave
with the observation angle smaller than the
critical angle.

b. The complex 3 plane for the transmitted wave
with the observation angle greater than the

critical angle.

The complex ra plane for the transmitted wave with

a different branch cut, Re kz =0, L is the

1
contour joining the branch point to the saddle point.
L, is that part of the saddle point steepest descent
path extending from the saddle point to -ie® . |
F' is that part of the saddle point steepest
descent path extending from +ioco to the saddle

point.

The complex p plane: waves in the upper medium in
the half space case. The transformation is

kP = k sin p . The branch cut is Im klz =0 ,
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Figure 3.2

ol i ok S A SR e MRS MM Sl E— O e — A MR S S —

P

L XL T R R PSR S S S R —

B —



. Pigure 3.3

L I W I e ——




4.1

4-1

Chapter 4.

GEOMETRICAL OPTICS APPROACH

TWO LAYER MEDIA

We first consider solutions to the reflection coefficients

for a two layer medium:

TE _ 1 _ 1/Ros - Roy
R = o [y i el

™

1/591 - SO.! J
d.)

L
and | R = 501 [l I/Sol. + S.‘I.Z WPCLE}!H

the
1.
2,

Yo 1+ Rpexplizks,d)
L+ R ) 1+Roz Rzzex}’(izl‘ﬂli) XOJ

- TM 1-5 eﬁP(iZku d) ‘
1-KR -1+50151: exp (i2k;y d) Yj'o

In the geometrical optics approximation,
interference pattefn is determined by three waves:
the direct wave from the antenna
the inhomogeneous wave excited by the antenna on the

surface, and

' the wave reflected in the subsurface following ray

optics paths (Figure 4.1).



TE

The denominators in 1 + R and

1 + R?M are expanded in power series :

1+RTE=’X°1[1 + z R R exp (c2kumd)]

);o (1-2 %, S, S, exp itk ma)]

"I 01 10 12

The first term in the power series gives rise to the half
space solution which consists of the first two kind of
qaves, both of which have been dealt with in the section
on half space. Mathematically, the direct wave corresponds
to the saddle point contribution, and the inhomogeneous waﬁe
cdrreponds to the branch point contribution due to klz
The summation term gives riée to all reflections from
the subsurface. At each observation point, the number of
reflections from the bottom léyer can be determined by
exercising ray optics. Each optical path can be traced
back to an image source.

The integral for the "reflected
terms of images" is of the following form

20k md

m-1

lo ‘iz

I <&, [ ak D(br)e R () Xy Ko TR

By rearranging terms in the integral

n.=1 rd kp~_£_ {I{% D (k ) xa1 XJO Rm E.‘ lk,;i‘ 2t.k m:iH(')(k/./,)
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If 2z is small, the important observation is that each
of the integrals in -the summation is of the form of

the half space transmitted wave, ( that is why the half
space transmitted wave is solved first.) , where 2md
now plays the role that was played by z in the half
space transmitted wave case. The k’, = k, sun 3 trans-

formation is made, the saddle point contribution is,

. ik, R | .,
s f2ae ' kyz m1 m k2
- L5 ¥ D (k) kp Xor Ko Ry Ry }"r=klsa~ocm 3

Ra = [o*+ (emd?
do b

The saddle point is at o, = tan-'-‘.-!%z
The above results hold for: kld » 1 and d¥%z. Uhen

ol exceeds the critical angle, then branch cut
contribution needs to be inclﬁded. The branch cut is
evaluated by deforming to a steepest descent path through
the branch point. In geometrical optiés approximation,
integrals along the BS's , the steepest descent paths
passing through the branch points , are usually neglected.
In deforming the branch cuts to the steepest descent path
through the branch point and before deciding that the final
contribution due to the latter is negligible, it must be
shown that the deformation is valid., If the deformation is
invalid, two alternative approaches can be taken. One
alternative is to choose another path and the other

alternative is to cheose a different branch cui:.



In the complex (S plane, there are two
'double—valued functions, kz and kzz , and their values
are to be defined. In analogy to the transmitted wave
case, therefore, for ofm < 9,'
Im k, €O ;
for &, >0,
Im k‘ >0

By the same argument as presentéd iq the

transmitted wave case, the contribution of the Sommerfeld pole

. R . .
Pire { SLﬂ.&PL JRErE ), is well taken care of by the

steepest descent path BS . The net contribution is
thg saddle point path r[ ~and the branch cut steepest
descent path BS. BS is to be negiected in geometrical
optics approximation.

For the double=-valued function k22'
it is to be discussed under two different cases: one .
case with a good subsurface conductor, the other case
when the subsurface is a good dielectric,

When the subsurface is a good conductor,

k
the branch point By = s:i.n”1 Ea' and various singularities are
1

shown in figure 4.2. For this case, the branch cut Im k22 = 0
is chosen because this branch cut can be detoured to BSz, the
steepest descent path passing through the branch 62. BS,



is of second order effect so that it is neglected in
geometrical optics approximation. With respect to kzz ’

there are two sheets. On the :first sheet, on which the

- o

original contour C lies, Im k22k>0 , on the bottom sheet
Im 'RZZ(O . Since the saddle point occurs on the first
sheet, therefore the value to be taken for k,, , in the
above expression for saddle'point contribution, is such that
its imaginary part is bigger than ¢, The Sommerfeld pole
P, , ( sin 8,,2 k,*-l'k;" ) , as can be seen from its
position in figure 6, is never included between the
o_riginal contour and the detoured contour. It, however,
may affect the saddle point o, if «m is getting close to

%: . In our regions of interest of big d and
moderately large p , this is never the case. Thus, the
effect of P2 can be safely disregarded. Therefore,

in summary, the values of double-valued functions k

z

and k2 5 are to be chosen in the follow:.ng manner .

fof ol < 6 Im k,<o , Imk L0

A P

’
for o§m>9,' , Im k>0 Im &k, >0

When the subsurface is a good dielectric medium, the
various singularites and contours are shown in figure 4.3.

The following cobservations are made:

1. This case contrasts with the previous case in that
Y
92 = Sin —El is at a drastically different
1 .
location.

2. The branch cut Im k2z= 0 cannot be detoured to the



steepest descent path BS, because the detour involves
passing through regions where the exponential blows up.

It is to be emphasized that, in geometrical optics

approximation, it is the BS, , steepest descent path

passing through branch point, that is negligible, and
not any arbitrary branch cut one defines. The pre-
scription, in this case, is to define a different
branch cut such that it can be detoured to BS, . The
branch cut choéen is Re ky, =0 which can fulfill

the function..

With respect to kZZ , again, fhere are twolsheets.

On the first sheet Re k22>0 , while on the second
sheet, Re k22<o . The branch cut Re k,, =0

can be detoured to the steepest descent path BS2

which is neglected in geometrical optics approximation.
Since the saddle point always occur on the upper sheet
with respect to this branch cut, therefore Re k2z>0
is the value to be taken in our éxpression. In summary,
the values of the double-valued functions kz and k22

are to be chosen in the following manner:

for oL <6, , Im h <O, Rek, >0

for o, >0, , Imk, D0, Rek,, >0



The two layer case is different from the

half space case in one other important aspect. In the
. half space case, the receiver is close to the surface, so
that the saddle point is always close to ‘é‘r . On the
other hand, for the two layer case , the saddle point for
_ the “reflected terms of images"™ have their saddle points

ol moving alono‘ the real p axis as (? and
2md@ are changed. When the saddle point o, app:oaches the
branch point B, , the saddle point method crumbles. Using
Watson's Leﬁuna, the criterion for the validity of the saddle

point method is found to be

k, R, (sin 6, - smd)l
n-1

>> 1

The above condition can be achieved by
either making k, more conductive so that kx has a bigger

imaginary part or by making R, bigger. But both of

' these procedures will lead to a decay of the reflections and

thus decrease the interference effects; they are largely

-

undesirable.

4.2 SOLUTIONS FOR THE FIELD COMPONENTS

By making full use of the mathematics
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developed in Appendix I and previous sections, the field
components have been derived. In the vicnity of the
surface, i. e. z«d.,P , the six electromagnetic field

components are listed in the following:

T It etkrp 3 '
H, = ~3= &; [smg(ak-'f-“)xuw)-l- Zr Cos 0 X, (6)

F X (0] sing

18 2K 2 e-aa-rik;p
T 4w My p‘a‘ (1+ (sinB, cot p) 7% sin ¢

-k‘sin ol

It u < 2 w1 om . ik kR
T ff%‘ ,él [X,a R, R, :.b.l.'.at.m:(,,,,eL ’i_l ﬁ—ﬁm—smyﬁ

E If w chr p .
E; = 4;rfu er [on (9)""2—:13(catBXol(e)+X°1(9))]sin¢

_ Ilwp 2k, e 3tk p _
47 pfa®  (1iisec 8, wtB) j% sin @

11w = 2 met m A th,Rm
+TIT7J~£—/7§L Ex [x_.to' R:o R:z ¢ *ZJ ‘e—,?Tsmﬂ

ko~ k, sinel,,
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_I;!_. #_ 20 i £ .
br Ja e (tisecd cot py¥2 sin &

| - ik, R
- Zy Dh X X R RS, o™ S si
ll-m. m=1 1z Vo1 No R, J‘o'-‘-k.st'nim R ingd
™ _ I‘ ka‘ 3 o ’
E, =~ %mut — [Cik-7) sno Qo) + 1222 @ (0
+ 37 sin0 Q"(0)] cos ¢
It & 2ik1* e'“”"#’
"' ‘-Iﬂa 81 f“w | {1+ { see 9. ot 9))/2 cos ¢
ik,
+ ‘H'NE Z [klzT Y sz 5""‘ t ZJ'}* k son &, ik sind,
iky R

R cos @
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'

Qi
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"

Evﬁ o Ie eihr ‘ | . .
" < e Q0+ TR (0200, + 6, ()] s g
. -az + iRy
+ oy - 22 A
lner. &, (L+ (sec 6, cot )72 05 @
IR m ""'1 R, 2 ik, R
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Seyeral points are to be noted in the above fomula:

1., The first term is the direct wave, The second term
correponds to the inhomogeneous wave. The third
term correponds to the feflected terms of the images.

2. In the first term, which is the saddle point contribut-
ion, the first order term correponds to the radiation
field.

3. At z <<f . 1.2. the receiver being close to the
surface, the terms X,{0) and Q(8) are much smaller
than their derivatives, X;lfﬂ) , Xo‘;. (8) r'Q’(B) ., and Q"(8) -

This is because of the cos § dependence.

4.3 NUMERICAL RESULTS

The interference patterns for the six electromagnetic field
components for different configuration and media are illustrated
in Appendix B. In the diagrams, the magnetic field components

have been normalized by

H ‘Hl' /\a Hmrm

while the electric field components have been normalized by

= ( Tlowu
E = ¢ 1A Ehorm.
The interference patterns may be best
understood by separating the contributions of the various waves.

Thus we depict in Figures 4.4 ~ 4.5, two typical field



components Hz and Ez séparated into the half space
solutions and the waves reflected from the firat boundary.

We note that n, together with HP and Ey are the field

components measured broadside, i.e. P ==%} ; while
E, . E, and Hg are those measured endfire, 1i.e.
$ = 0. The maximum of the first reflected waves for

Hz' and E, occur at different locations.
To explain tﬁis difference, we consider

the radiation pattern due to the dipole lying on -the

lunar surface. Under the geometrical optics approximation,

the maximum of the wave reflected from the subsurface

correponds to the angle of the Poyn%ing pdwer that is

radiated into the first layer. For a HED at ¢ = n/2, the

maximum power occurs at the critical andgle sinnl(k/kl)

and kl js assumed to be real. But for ¢ = 0, we find

that the maximum-occurs at an angle sin_1 J 2n2/(1 + nz) ’

vhere n = k/kl .

The following observations are made:

1. In the direction of maximﬁm power, not all field compon-
ents have to be maximum. e.g Hz aqd 99 have max-
imum at different locations.

2, A change of permeability from f(" to/u, >/,l° ﬁterely
changes the magnitude of .kz . If j“ becomes
complex, then the positions of the various singular-
ities change, and the integrals must be re-evaluated.

on the new complex plane.



3. A small loss tangent chahge has small effect on the
positions of peaks and troughs but changes the ampli-~
tudes of the field components drastically. )

The resulté of this thesis are now
compared with previous findings. Brekhovskih3, in his
solution made the kind of mistake due to the wrong

-approach to B, and B_ as discussed in the section

on half space solution. He got the negative of the

correct answer. Thus, if one plugs in z =0 in
equations 19.36 and 21.14, one obtains

2 _fi_eik/: + 2ky ei.ki/:

:

r

and thnus, fajils to reproduce Van Der Pol's exact answer,

The validity of the calculations of this
thesis can be verified by carrying out exact solutions
of the integrals. Tsang {(1272) obtained such solutions by
numerical intearation with a computer. The computation
-is extrerely time cqnsuming and a single comparison is
.shown. In Figure 4;6 , the exact solution may be compared
with the .asymtotic solution under_the geometrical optics
approximation. It can bhe seen that the geometrical
.optics.approximation is not cood near peaks in the
interference curves. Mathematically, the peaks are
those regions where the saddle point &, approaches the
branch point 8, . The saddle point method crumbles

One more point recuires discussion.

In the geometrical optics approximation, BS and Bsz,



.the branch point,steepest'descent paths contributions,
have been neglected. These contributions correspond
physically to the‘reflections of the lateral waves
from the bottom layer. Thus, it is implicitly assumed
thét thé energy arriving at the ﬁpper surface of

layer 1 due to the reflected lateral waves is small.
For a better approximation, these effects should be

included.

The calculated results using the geometrical optics ap-
proach are presented in Appendix B. Both a vertical magnetic
dipole and a horizontal electric dipcle are considered.

Rossiter et al (1972), has performed the model tank ex-
periment with a dipole over a tank of dielectric over a perfect
conductor. The theoretical results are compared with experi-~
mental findings in Figure 4.7.

Experiments have been done on glaciers
to check both theory and experiment. The Athabasca
glacier, located about 75 miles south of Jasper,

Alberta, has been thoroughly studied by others with
such methods as seismology, gravity, resistivity
measurements and drill holes. In Figure 4,8 1is a
single comparison. The thickness of the ice determined
by our theoretical curves is 180 meters which agrees
Vefy well with the thickness determined independently

from the drill hole.



4.4 STRATIFIED MEDIUM WITH MORE THAN TWO LAYERS

Cases of more than two layers can be
dealt with in similar ways, using géometrical optics
approximation. The steps are the same: the denominators

of 1 + RE and 1 - RTM

are expanded and combined with
other terms in the integrand. A suitable transformation
is made e.g. kf'-'-"h;sdnﬁ o, h,,=kzsd~/3 ., hf=h, '5"."_/1'
etc., depending on the predominant term in the exponential.

| By expanding the denominators in the
n-layer reflection coefficient, .oné can get, in general,
two terms: the first being exactly the sz;\me as the
n -1 layer solution, the second term corresponding
té the reflections -generated by an addifional boundafy.
'_rhis, _indeed, has been the case for the two layer prbble.m
where we get baqk the half space solution plus the "reflect-
r_ed terms of images"”. The three layer problerﬁ is illustrated

in the following:
TE : s meogem 20k, mcl;
1+_R’ -on [1+MZ.IX10R10'R113 ]
where,

C o - R, -‘
R,g“—'ﬁ:[l-“ ..31 ]
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Rn-}.e‘u 2 1R33
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R:i 29 + ;ﬁc.t q .'F!

where le is the binomial coefficient.

: ] e e
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Iif ~
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Thus, there are three factors, viz.,
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The fixst two terms combined is just the two layer solution.
To find the location of the saddle point in the last term,

‘'we observe that the exponential is

ikyp + 20 kygmdy + 2iky, (pt ) (dy-d,y)

so that the two equations to be solved are
kf = k;S‘:ﬂ 61 = bz Sin 91

2mditan®, + 2 (p+2) (d,-d,) ta B, =p

where 8; is the saddle point in the kf=' klsin/? trans-~
formation, 6, is the saddle point in the %=kz53r%
. transformation. |
Note that physically, the above equations
correspond to the ray paths given rise by the multiple
reflections in geometrical optics when there are several

boundaries of reflection.



For complex’ kl

actually four eguations and four unknowns as both the real

.and k, , there are

and imaginary parts of the equations are to be taken. For
siightly conductive ky, and k, , the real parts are solved
first to get an approxinaté answer first. The imaginary -
phrts are then taken into account and the final answers
are obtained by perturbing around the approximate answers’
using MNewton's method of solving roots of eguation.

Either the transformation k[" =k, 5ths3
or the transformation h/, =k, snf is made, depending
on which layer is thicker, Care has alsc to be exercised
in choosing the values of double-valued functions, the

k,'s , in the complex /3 plane as in the two layer case.



FIGURE CAPTIONS

The image diagram for the two layer case.

The complex £ plane for the two layer case with a good
subsurface conductor. |

The complex B piane for the two layerrcasewwith.a sub-

surface dielectric.

The half space solution for H, and also the

first few reflected terms.

The half space solution for E, and also the first
few reflected terms, Comparing figure lzgand 13
show that the maximum for the reflected terms

occurs at different location for the two components.

Comparison of geometrical optics approximation

with exact numerical integration.

4,7 Comparison of-model tank results with geometrical

optics approximation. Dotted curve is G. O. A,
(Geometrical Optics Approximation). Solid curve

is experimental measurement. Vertical scale is 15

db. per inch.
Comparison of G. O, A, and Athabasca Glacier data
measurement. The stratified diagram gives the

paramefers of the G. O, A, curve. Vertical scale is

8 @b, per inch.
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Chapter 5.

MODE APPROACH

In this chapter, we use the residue series method in combi-

nation with either the modified saddle point method or the numeri-

cal method to evaluate the integrals. Each term in the residue
expansion can be attributed to a normal mode of the layered medium.
The characteristics of mode solutions are then discussed. When

the noﬁ—modal'part is evaluated by the modified saddle point
method, the results are applicable to the far field regions only.
wWith a coﬁbination of the residue approach and the numerical
method, the fesults can be extended to all regions of interest.

The édvantagesAand the diéadvantages of the various limits are

also discussed. Theoretical results are illustrated.for the
various field components plotted in the form of interference

pattexrns.

5.1 METHODS OF APPROACH

" Consider the integral

o - ,. 23 . (1) P
Moo= S0 ax EIMRT (14pTE) oikeZ By (kpp)sind (5.1)
2 o p _811};2
where H aenoﬁes the z-component of the magnetic field vector.
z

. . . . et ndicular
We use cylindrical coordinate system with z-axis perpendicu

to the surface of the stratified medium and ? denotes the



transverse distance with origin at the transmitting antenna, the

azimuthal angle ¢ is measured with respect to the transmitting

antenna axis. The propagation vector k in the free space re-

gion has compbnents kD and k. I%2 denotes the antenna

strength. H{l)(kpp) is the first order Hankel function of first
TE

kind, PR represents the reflection coefficient for TE wave

components due to the stratified medium.

For the two layer case, the reflection coefficient RTE
takes the following form
RIZ . 1 1o 3 (5.2)
RTE TETE ,
&E 1 + RyIRCexp(iZk; ,d)
TE T s .
where ROl and R12 are the usual Fresnel reflection coefficients

for TE waves at interfaces between the first and the second
boundaries.
In order to solve the integral in (5.1), we make the trans-

formation

kp = ksing ) ' (5.3)

so that the two Riemann shects due to the bhranch point kZ is

unfolded., Ve then have four Riemann sheets due to

ke k and PFe k In the integral (5.1), we can write

0
kﬂ

1z 2z*

Hl(kpp) = Hl(kpp)e"l and insert an exponential factor

exp{(ik.p) which is in fact the factor for the Hankel function

0
at its asymptotic limits when kpp tends to infinity. Correspond-
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ing to this factor, there is a saddle point at & = w/2., We then
detour, on the complex 6-plane, the original path of integration
to the steepest decent path passing through the saddle point..

The contribution to the integral is then composed of three parts

H =TI+ I_+ 1

7 p s b * 1) Ip is 27 times the residue series

- of the poles enclosed between the new and the old paths, 2) I,
is the branch cut contribution due to k, ., and kzz' and 3} I,
is the saddle point contribution. Each pole on the é-plane can

be interpreted as a normal mode pertaining to the layer medium.

We therefore discuss our solutions separately for the modal
part corresponding to the residual series and the non-modal

part corresponding to the branch cut and the saddle point

contributions.

5.2 MODAL SOLUTIONS

In order to find the normal modes pertaining to the
layered medium, we determine the poles of the integrand.
Due to thertwo branch points at kp = kl and kp = k2’ there
are four corresponding Riemann sheets. We are interested
in the sheet where Re(klz) > 0 and Re(kzz) » 0. The poles
of the integrand are in turn deterwined by the zeros of the

denominator of 1+RTE. _Let

i ' .4
RisRyg = € 0 < Ref¢) < 271 | (5.4)

we can write, in view of the denominator of (2}

Y

#

O



b+ 2klzd = 2%f £ =1, 2,. « o, =

(5.5)

For each £, there are two roots corresponding to Re(kz} > 0

and Pe(k, ) > 0. A pole location plot on the complex 6-plane

-

is illustrated in Fig. 5.1 for a layer of depth 4) with permi-

tivity 2.16(1+i0.0022) over a perfect conductor. The
original path of integration and the new steepest descent path’
are also shown on the same figure.

The poles that lie between the new and the old paths

of integration contribute to the integral in (5.1). The con-

tribution is determined by 2wi times the residue series.

2
. k
p i2ky,d (5.6)
_1g F— ¥pp (MRy,e” iz . !
Ip B § dz " pt) (x p)elkzz
polesic 1 d 1 p
d——--kp [14Ry,Ry 4 1z7) _ k,

at the pole
Fach term in the summation series corresponds to a normal

mode. Note that each normal mode is a cylindrical wave.
"Note also that as p + «, the Hankel function has the asynptotic
linit /i etRePTIL

With regard to the modes that are excited by the antenna,
we have the following observations: 1)} All excited modes
have Re(kp] < kl’ 2} Por the class of modes having Re(kp) < k,
they all have Re(kz) > 0 and Im(kz) < 0. Physically these
modes correspond to waves leaving the surface with increasing
amplitude. We . term these waves leakly modes, they can
also be called radiation modes of the structure. 3) For the

class of modes having k < Re(kp) < Re(kl), all have



Re(kz) < 0 and Im(kz) > 0. Physically these modes correspond
to waves coming toward the surface with increasing amplitudes
away from the surface. We term these waves creeping modes.
They are surface-like modes and are related to the waveguide
"modes. 4) For the leaky modes, the transverse wave number ko”
has both positive real part and positive imaginary part. The
magnitude of the imaginary part is large as compared with

that of the creeping modes. The leaky modeé decay very
rapidly away from the transmitter and are important only in
regions near the dipole. 5) The transverse components of

the creeping modes have a positive real part and a positive
imaginary part. The creeping waves decay relatively slower
than the.leaky waves with trasverse distance.

The creepincg modes are the significan£ ones in regions far
from the transmitting antenna. 6) The number of normal modes
excited by the antenna depends on the thickness of the slab.

If the slab is sufficiently thin no mode will be excited

at all. We discuss the thin laver case in Section 5.4. The calcu-

lated results are presented in Appendix C for different layer thickness.

5.3 INTEGRATION AROUND THE SADDLE POINT

In the absence of anvy stratified medium, the saddle point
contribution from the tranemitter corresponds to the direct
wave from the dipole. When there is stratified medium prescnt,

the evaluation of the saddle point contribution is corplicated



by the poles in the neighborhood of the saddle point. Besides
the pole effects, the saddle pbint contribution is also affected
by the rapidly varying exponentiél exp(iZklzd) factor in the
reflection coefficient. The oscillation of this factor is fast’
wvhen d is large. We thus evaluate the saddle point contribution
for the followinag three cases: 1) when p »>> d, we use the
ordinary saddle point method (0SP). 2} When p > d, we use

the modified saddle point method (MSP). 3) When pv d, we resort
to numerical evaluation by using the Gaussian Hermite Guadrature
(Gi1Q) formula.

1) In applying the ordinary saddle point method, we transform

the integral to the form

-

.0 2
= : - -
IS f .2 (x)exp(-x /2Ydx; &(x) z Ame (5.7)
: m=0
The solution is then given by
= D =
I, = OSE van{Ay + By + 3R, 4+ } (5.8)

Ve include terms to p"3.

The integral (1) can be transformed into the form (5.7) by setting

ikp (1 - sin®) = x2/2 (5.9)

When p »>» d, there are no poles near the saddle point and
the integrand does not oscillate very fast. Thus the

ordinary saddle point method is applicable.

2) Suppose there is a pole near the saddle point at x = x,.

Xy = [i2kp(l - sinﬂp)]l/2 (5.10)



where Gp is the location of the pole° Let

M = %1Q0¢(x)(x - Xo) (5.11)

We can write

B(x) = (x) + —rem ‘ {5.12)
XX
: 0
and
IS = WS + Wp ‘ . {(5.13}
where
~x2/2
+inMe 0 erfc(-iw,) Imw,>0 (5.14)
W = £m Ly | M o=
~imMe O erfc(f»e) Imw0<0 (5.15)
W, = xO/Jz
With the effect of the poles being subtracted , Ws can be
solved asymptotically
o _yz 5
We =L vix)e ™ /Pax = osp - W) (5.16)

where [Wb] denotes WP in inverse power series of w We thus

O.
have the solution for the modified saddle point method.

I, = MSP = OSP + poges{wp - [Wb]} (5.17)

Evidently, as Yo >> 1, the moédified saddle point result is
identical to the ordinary saddle point result. The summation
in (17) extends over all poles near the saddle point., Both

0SP and [Wp] are worked up to p—3 terms.

3) The Gaussian Hermite qguadrature formula is particularly
useful in evaluating the line integral along the steepest desc?nt

path. Let

2 (5.18)
ikP - ikpﬂ = X
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we have

. 2
_ _ kx N : .19
ky, = Vikp [2 1kP ] (5.13)

And the integral can be cast into the form

I, =_£m f(x) exp (-x%) ax (5.20)
where
2
£lx) = ~1% %o X (1 4+ gTEy pfl) ik,2 + 2 (5.21)
X = "&T‘ ""“'kz ‘5‘ ( R ) Hl ( pp)e
By the CGHO formula,
n
IS = 'E Wif(xi) + Rn ’ (5.22)
=1
vhere
X; = ith zero of the Hermite polynominl Hj (x)
_ n-1 2 2 '
w, = yn 2 nt/n [thl(xi)] | (5.23)

is the weighting factor, .and

- YT nl
2% (2n) 1

R

_ £(2n) gy co < £ < o (5.24)

is the error term. For the case p £ d, there are poles close

te the contour of integration, and also the integrand oscillates
rapidly due to the ﬁresence of the exp(i2klzd) factor in the
reflection coefficient. With the knowledge of the locations

/

of the poles, we can adijust n such that the error term Rn is_-

vanishingly small.



Fig. 3 illustrétés the case of a 4X dielectric layer
with permittivity €y = 2.1qi,+ 10,002 over'a-perfect
refléctor.‘ The saddle point contribution is calculated by
using OSP, MSP and GHQ; It is seen that all three methoas
approach saﬁe values as p > 100A. Thé MSP and GHQ coincides
for p > 10A. "All three methods depart considerally for
. p < 10A, Thus for p < 102, we recommand GHQ, for 10X < p < 10024,
one can use either MSP or GHQ. TFor p > 100X, 0OSP is sufficient-

ly accurate.

5.4 INTEGRATION ALONG THE BRANCHES CUTS

There are twp branch points at kp = kl and kp = kz. Cor-
respondingly we choose two branch cuts Re(klz) = 0 and
Re(kzz) = 0., The integrand is an even function of klz' Thus
the branch point at kl does not contribute to the integral.
The contribution due to the branch point k22 can be calculated
by detouring the branch cut to a path parallel to the path of

the steepest descent. The result is e

) 2 . (5.25)
X x 2 ~2/ky%-k1%a _ikyp '
;o= Ir o110 kp © ©
b~ Tw 12%, .d 2 2
(1+e™ " "lz Rol) klzkz p o
k, = k,

Physically this corresponds to an inhomogeneous wave that

decays away from the bottom surface with the exponential factof

exp(-2/£ 2 _x.?4g).

2 1



Therefore, except in cases when the slab region is very
thin, the effect due to the branch pbint k2 is not obhserved
on the surface of the layered medium.

In Figure 4, we show contributions due to the branch point
for three cases. The permittivity of the first medium is
3.0(1 + i0.001)ey The permittivity of the second medium is
5.0(1 + i0.002)eq The depth varies from 0.05Xx, 0.1x, 0.2X,"
0.5, 1.0Ax. Obviously, as the depth increases, the Ib effect

diminishes.

5.5 RESULTS AND DISCUSSIONS

In the previous three sections, we have discussed the
three separate contributions to the integral in (1). The
total field at a receiving point due to a transmitting antenna
is obtained by summing over all the three contributions. With
applications to the radio freaquency interferometry in mind,
we illustrated the methods by calculating the interference pat-
terns as a function of distance from the transmitter.

When the slab is sufficiently thin, no mode is excited
and the integral is due to the saddle point and branch point kz.
Figure 5 shows interference patterns dus to layers with
€, = 3.0(1+i0.001)€0 and depths 0.05% and 0.1X on top of a

dielectric half-space with &, = 5.0(1+i¢.0062)€, . The saddle point

2
contribution is calculated by the ordinary saddle point method.



5-1%

Vhen the layer gets thicker, modes will be excited. We show

| in Figure 6 the interference patterns for the same media with
depth .2, .5 and 1 wavelength. Only 1 to 3 creeping modes
are excited. In Figure 7, we illustratéd1jmacaée of a 4X\
~layer on top of a perfect c0nductor.. The pole location plot
has been shown in Figure 2, Because there are poles that are
quite close to the saddle point, OSP and MSP afe'not applicable
in near and intermediate ranges (Figure 3). The saddle point
contribution in Figure 7 has been calculated with GHQ and MSP,
GHQ result should be more accurate,especially in near field
regiohs.

Thus the problem of electromagnetic fields due to a hori-
zontal electric dipole antenna has been solved with the mode
approach. We conclude that in calculating the saddle point con-
tribution in the near field region, one should use the GHOQ
method. In intermediate regions, and in many cases far field
zones{'the MSP method whould be used when there ére poles
near the saddle point.r When the laver is thick, all branch point
contributions can be neglected. But when the layer is very thin,
one must take into account the branch point contribution. Al-
though the study is made for the two layer casé, the approach

can be readily extended to more than two layer cases.



Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

FIGURE CAPTIONS

Pole plot on the complex €-~plane. The depth is
d = 410, the permittivities are £y = 2.160 + i0.002,

The lower half-space is a perfect reflector.

Comparison of results by OSP, MSP and GHQ. The
depth is d = 4A0, the permittivity is €y = 2.16(1+10.002) .

The lower half-space is a perfect reflector.

Branch cut contribution compared for layer depths 0,052,
0.5 and 1.0A. The permittivities are £y = 3.0(1+10.001)
aﬁiEz = 5,0{(1+10.002). The vertical scale is 40db per

division.

Interference patterns for thin layers. There is no
pole contributions. The permitivitties are

€, = 3,0(1+i0.001) and £, = 5.0(1+i0.002) . The pat-

1l
terns are plotted for d = 0.05X and 4 = 0.1A. Verti-

cal scale is 20db/division.

Interference patterns for a layer with € = 2.0(1+1i0.001)
on top of a half-space with €y = 5.0(1+i0.002) . Calcu-
lations are done for three layer depths., Vhen d = 0.22
and 0.5),there is only 1 creeping mode being excited,
When d = 1A, 3 creeping modes are excited. Vertical

scale is 204b per division.
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Figure 5.6 Interference patterns calculated with both MSP and GHO.
The aepth is d = 4\ and the permittivity is
g = 2.6(1+i0.b022). The subsurface is a perfect

conductor.
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Chapter 6.

NUMERICAL APPROACH

6-1 SIMPSON'S RULE

‘The integrals in Egs. (1) and (2)‘can be readily evaluated
numerically provided they are well defined and properly conver-
gent. In the actual computation procedures, we change the Hankel
functions to Bessel functions and intégrate from 0 to « instead
of.from - to +«. Although the Hankgl function has a singularity
at kp = 0, the integrand as a whole is regular at that point.

For the integrands to be well defined, we must avoid the branch

point.kp = k. When Im(k} # 0; the branch Point does not lie
on the path of integration. If Im(k) = 0, we choose the Sommer-
feld path for the integration.

Simpson's rule is used in carrying out the numerical inte-
gration. The amount of computer time needed to obtain a given
accuracy is reduced in two ways. First, because of the §resen6e
of the factor exp(ikzz) in the integrand, we choose a non-zeroc gz;
the larger the =z, the faster is the rate of convergence. Physiéally,
this choice corresponds to having the receiving point above the
surface. In the lunar experiment, the receiving antenna is
about 2 to 3 meters above ground when mounted on the Lunaxr
Roving Vehicle. Secondly, we vary the integration increments
Ak. as a function of distance from tﬁe transmitter. The magni-

P

tude of Akp depends mainly on the rate of oscillation of the

.y



Bessel function which for large value of the argument kpp is

proportional to cos kpp.

For compafison with other technicues, we have evaluated
numerically the Hz—component of a two layer model with a
perfect reflector. The freqﬁéncy is 8MHz which corresponds to
a free—spage wavelenath éf o= 37,5 meters. The layer has
dielectric constant 3.350,'1055 tangent 0.01, and a.layer thick-
ness of 4%0. The results are shown in Fig. 6. The receiving
antenna has a height of 3 meters. We used Akpp as small as
0.5 to detérmine the incremeﬁt Akp. With.a distance of pil4ko,

~

Akp = 0.5/14%, ~ 0.004. The computation is stopped when the
absolute magnitude of the integrand becomes smaller than 0.002
of the accumulative area. A £ypica1 value of the number of
increments used for computation is about 5,000. Computation

time with the IBM 360-65 was about 2 minutes per point as

shown in Figure .
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6.2 FAST FOURIER TRANSFORM METHOD

Seéarate the integral (1) into two parts I, and Iz.
The first part corresponds to solutions in the absence of
any stratified medium, and the result is given by the iden-

tity
. . k - ’
=l e o o e tkeE g oy ax C(6.1)

The second part includes all effects due to the reflection

coefficient RTE_and after changing to Bessel functions,

| - iTsk 2
I, = [ dk, L

TE eikzz
2 0 p 4Tk

R Jl(kpp}sin¢ , (6.2)

which is the integral that we want to solve with the FFT.
In applying the FFT, we use the formula (Gradshteyn and Ryzhik,

1965)

= e Vkp =1 -
[" e Iy (k e)dk, = = (1

v
0 )

YVZE pe . [6i3)

v =v_ + iv., Re {v + ip} > 0

R I

The integral is written in the following form

=]

-vpk : |
I, { dkp gl p)e Jl( pp)dkp (6.4)



where

T
5=
~f =
ol
©

g(kp) - i rTE ikzz + vpk (6.5)

We can write (Cooley, 1967) for hkp = 1/2F where F is the

Nyquist frequenéy

3 -1
: 1 i2ﬂfkp N
g(kp) = m—p— E a(f) e for O ":kp < (-2- - l)Akp
n=-x
(6.6)
where
o o P P
f = Ak
n/N 0

The factor -271f corresponds to v_ in Equation (6). The right

I
hand side of (9) is periodic and does not tend to zero at .
We can multiply (9) by exp(-kap) so that the right hand side
of (9) is sufficiently small for the range of kp between

(% - l)Akp and =, Then the final solution becomes, in view

of the identity (6)

N (6.7)
-i-—l
_ 1 n 1 _ i2mn 7 21
I, = ﬁgf; E a(ﬁzfgﬁ 5 [1 (v~ NAk T/ /«v 12nn/NAL ) 2+p%]

n=-N/2



In choosing the increment Akp, we recall the two alternatives
suggested in Section ITI. If we make the upper half space
slightly conductive, which corresponds to Im k # 0, then

we choose Akp to be smaller than the distance of the branch
point from the real axis on the complex kp-plane. I£ we in-
siét on a real k, then we choose Akp sucﬁ that one of the data
points coincides with the branch point and such that Akp is
smaller than the distance of the pole or branch point closest
to the real axis on the complex kp-plane.

To calculate the expansion coefficient a in Equation (9) we
use the FFT algorithm in a subroutine which, for a given set of
data dk' returns the result

N-1

T. = d e j = 0, 1' ‘-..N_l ‘608)

We first alias the function g(kp) with period NAkp and denote

the aliased version by gp(kp). The subroutine requires data

points of gp{kpp) between 0 and (N—l)Akp. Note that the function
X i ual to k bet 0 and (N/2~1)Ak_ but

gp( pp) s eq g p) etween (n/ ) A o bu gP(kp)

between (%-I)Akp and (N-l)i\kp is equal to g{ky) between —(N/Z)Akp

and -Akp. In the subroutine we calculate
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N-1

-i2nin/N

n ;
et = Ak Ak = e s e N=1
p) o/ gp(z p)e n o, 1, N~1

L=0
(6.9)

and returns the aliased version of a(n/NAkp), ap(n/NAkp).
We must be careful in translating from ap(n/NAkp) to
a(n/NAkp) within the limits -E%E—‘to E%E— in order to use
the result (10). P

We must choose NAkp such that the function g(kp)
is sufficiently near zero outside the limits HNAkp/z to
NAkp/z. Although mathematically, we could choose z to be
large, its value is predetermined by the experimental
arrangement. Vv, must not be too small. Note that QR
be greater than zero but cannot be larger than z or the ex-

mast

ponent in (8) will cause g(kp) to diverge. We choose\h = z/2.
In Figure 1 and Figure 2, we show the interference pat-
terns for Hz calculated with FFT on the IBM 360/65 computer
for a three layer and a six layer case, respectively. The
height of the observation péint, z = 0.2133\u which corres-
ponds to 2 meters for a frequency of 32 MHz (values that were
used in the lunar experiment). The computation time was about
2.5 minutes for both cases. These results are to be compared
with the results obtained with Simpson's rule and shown also

in Figures 1 and 2.



6.3 DISCUSSION

We have shown that with the reflection coefficient
formulation, the problem of calculating the electromagnetic
field components due to a dipole transmittimg antenna on a
stratified medium can be solved readily with the FFT algorithm
and the Simpson's rule and illustrated for H, for a three

layer and a six layer case. See Figures 1 and 2,

In Figure 3, we compare the FFT method with results from
the geometrical optics approximation and the mode analysis.
The analytical methods consume very little time, but they are
applicable only in certain regions according to the nature of
the approximations involved. The geometrical optics result
applies when the distance ig far from the transmitting antenna
and when the layer is thick and lossy. The mode method can
be applied to general cases,rand is extremely useful for thin
layers. ’Thé FFT results for some general stratified

media are also presented in Figures 4 - 9.



Figure 1.

Figure 2.

Figure 3,

FIGURE CAPTIONS

Comparison of the direct and FFT methods for

a three layer model in which

€y = (3.3)(1 + io.Ol)s0 dl = 1X
52 = (5.0Y{(1 + 10.02)80 62 = 2)\
€4 = (8.0) (1 + 10.04)50

Vertical scale is 10 db per division.
Comparison of the direct and FFT methods for

a six layer model in which

g4 = (2.0} (1 + 10‘01)80. dy = 0.5
€,y = {3.0) (1 + 10.02)60 d2 = 1X
€4 = (4.0) (1 + i0.03)t-:0 d3 = 2}
e, = (5.00(1 + i0.04)e0 d, = 32
Eg = (6.0) (1 + iO.OS)E0 dg = 4
et = (8.0)(1 + iU.OG)EO

Vertical scale is 10 db per division.

Comparison of the FFT, Geometrical Optics (GOAa),

and Mode Theory (MODE) for a two layer model in

which
el = 3.3(1 + 10.02)60 . dl = 4)
€, = 6.0(1 + 10.04)80

Vertical scale is 10 db per division.
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Chapter 7.

DISCUSSIONS

7.1 COMPARISON OF THEORETICAL SOLUTIONS

In Figure 7.1, we show Hz' as a function of distance cal-
culated onlthe basis of the tree different approaches for a sin-
gle model. The model consists of a single layer, 4) in thickness,
with ¢ = 3390 and tans = 0.01, between free spacelabove and a
perfect conductor below, The fields are calculated for a receiver
-at.a height of 3 meters above surface at 8 MH_. Inspection of
the figure shows that the results from the mode-analysis agree well
with those obtained from numerical integration, Note in particu-
lar that the positions of the first peaks in the geometrical optics
approx1mat10n and in the mode analys1s occur at different loca-
tions. In the geometrical optics approach, if this peak is used
to predict the depth of the subsurface reflector, we see that the
mode analysis will predict a smaller depth. 1In the following
sections, the theoretical calculations are compared with the vari-

ous experimental results.

7.2 FEXPERIMENTAL CONFIRMATION

Both the concept of this experiment and the egquipment have
been tested extensively on glaciers and with laboratory-sized
scale models. Because of the variability of natural materials;

we used three different glaciers-f the Goner Glacier in Switzer-



land, the Athabasca Glacier in Alberta, and several glaciers

that drain the Juneau, Alaska icefields. Each of these glaciers
had been studied previously. PBecause the shape, depth, and
physical properties of each glacier were known already, the data
obtained on the glaciers can be used to check our theoretical
expressions. Although we have collected data on several profiles
on thé Gorner, about 50 profiles on the Athabasca and about 120
profiles on the Juneau glacidrs, with lengths of 1 to 1% km,

we shall cite results for only two profiles. These results

are typicai of the other profiles.

The Gorner glacier, located in southern Switzeriand,
has been studied for more than a éentury. The rather extensive
set of data includes the results of gravity, seismic, and (D.C.)
electrical.resistivity surveys. The thickness and shape of the
glacier were‘well—determined. Our field gear was quite simple
and included‘a General Radi6 1330A bridge oscillator for the
transmitter, a Galaxy R530 communications receiver, and homemade
antennas. The glacier was quite thick in our test area, In
Fig. 7.2 we show the interference pattern of the vertical magnetic
component for the broadside transmitting antenna ét 10.MHz. The
cbserved peaks and troughs match very well the corresponding
features in the theoretical curve calculated for a one layer

medium with dielectric constant 3.250(1 + i0,03).

The Athabasca glacier, located about 75 miles south of Jasper,

9—106i

Alberta, Canada, has been thoroughly studied 1so by such other

methods as seismology, gravity, electrical resistivity measure-~
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ments, and drill holes. The ice thicknesses measured by seismic
:eflectionsrand by direct measurement in boreholes agree dguite
well and we use the profiles reported by Paterscn and Savage

as standards with which to compare the thicknesses determined

froh our_electrical éounding technique. In figure 7.3, we show
typical results, the interference pattern of the vertical magnetic
component at 2 Miz. Note the excellent match between the'experi-
ment curve and the theortical curvés'obtained with both the

geometrical optics approximation and the mode analysis. Our

interferometry data indicate a depth of 180 meters wﬁich is in
aood agreerent with the results of drilling, seismic and gravity
surveys. | | |

A scaled model ténk, operating at 6 GHz, was used to obtain
ihterfeience'patterns for a dielectricrlayer with dielectric
cons tant 2.1650(1:+ i0.0022) over an aluminum reflector.. The
general features of the model tank were described by Rossiter
gg_gl.a,.and some results from the study of this particular case
for depths greater than .ZA were reported there, with our mode
analysis, we are now ahle to match the experimental curves for
shallower depths, In fig. 7.4, we show results for layer thick-
nesses-of 1X and 2X. The curves are comapred with‘theoretical
calculations from both the geometricél optics and the mode ap-
proaches. MNote specifically that for these shallow depths the
geometrical optics approximation fails to account for even the
fross features whereas the mode approach fits_the‘experimental

data excellently,



CONCLUS IONS

The radiation fields due to a horizontal electric dipole
laid on the surface of é gtratified medium have been calculated
with three different approaches and compared with the wvarious
experimental results.' The solutions are obtained from the
refflection coefficient formulation and written in integral forms.
In the near field of the transmitting antehna, analytical methods
involving asymptotic expansion are not applicable. Direct numerical
integration of the integrals by a computer is the simplest and
the most useful. The numerical method for near field calculations
also vields accurate nesglts and uses less conmputer time than far
field calculations. When the receivef is far away from the trans-
mitting antenna, the integrals can be evaluated asymptotically by
the method of steepest decents. For high lossy media and large
layer thickness, the geometical optics approach gives rather accurate
results. The interference patterns.calculated from this approach
cén be easily interpreted in terms of rayv optics. When losses are
small and layers are thin, the mode approach is most attractive.
The results can be interpreted in térms‘ of normal modes of the layered
medium. Although the calculations and illustrations presented
in this paper were done for the one laver and the two layer cases,

the calculations can be readily generalized to handle more layers.
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Fig.- 7.1 Comparison of theoretical results. These interference
patterns are calculated for a dielectric layer with
dieiectric constant 3.350(1 4+ i0.,01) overlying a
perfect conductor. The receiver has a height of 0.08

wavelength,

Fig, 7.2 Comparison of Gorner glacier data with theoretical
| results for the vertical magnetic field component H,
at 10 MHz. The theoretical curve is calculated for

a one-layer medium with dielectirc constant 3.250(1 + i0.03)

Fig. 7.3 A set of Athabasca data taken at 2 MHz, site 3 compared
with the theoretical results obtained with mode-approach
and geometiréal optics approach. 'The theoretical results
are calculated for a layer of ice with dielectric constant

3.3e,( 1 + i0.15) and depth 1.2} = 180meters.

Fig. 7.4 Scaled Model Tank experimental data compared with theore-
| tical results obtained with the mode approach and the
geometrical optics approximation. The model consists of
- a layer of oil with dielectric constant € = 2,1686
{1 + i0.0022) . The subsurface reflector is an aluminum
plate. The upper set of curves is for a layer thickness
of 1), the lower set for 2X,l being the free space

wavelength,
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